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Theoretical investigation of the band structure of  three types of  nonclassical 
polymers,  namely alternant (one- and two-dimensional),  nonalternant and 
heteroatomic, are carried out. Although polyradicals, these polymers have a 
considerable delocalization energy which may determine their relative 
stability. 

The spin-density distribution of the alternant type of non-classical polymers 
corresponds to a ferrimagnetic ground state at 0 K. 

The non-classical polymers represent a new class of  organic systems as their 
band structure and magnetic properties essentially differ from those of com- 
mon polymers. 
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1. Introduction 

Nonclassical polymers [1] like nonclassical hydrocarbons [2] have a system of 
conjugation to which no Kekule formula can be attributed. In spite of  being 
polyradicals, they are supposed to be relatively stable due to the considerable 
delocalization energy [1]. 
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In the first paper [1] the polymers I and II had been considered as models for 
non-classical polymers 

I II 

It was shown that their ground states are characterized of maximum spin multi- 
~ ( s - ~ )  obtained by plicity. This is in complete agreement with the formula S = ~ * 

Ovchinnikov [3] in the treatment of some alternant polyradicals by means of a 
�9 . , 0 

general Heisenberg Hamlltoman. Here s and r denote the total number of starred 
and non-starred atoms, respectively. 

Using the exact solution of the PPP Hamiltonian Koutecky et al. [4] proved 
recently that the hydrocarbon, 

which may be viewed on a cluster related to polymer I, has a quintuplet ground 
�9 0 

state 5Az, i.e. the total spin is S = �89 3) = 2. This result provides strong support 
for the existence of molecular ferromagnetism in hydrocarbon polyradicals. The 
latter investigation together with the earlier results obtained in [1, 3, 5] shows 
that nonclassical polymers may exhibit interesting magnetic properties. Therefore, 
it is expedient to extend such investigations to different types of polymers in 
order to support the theory, as well as to attract the attention of  the synthetists. 
Having this in mind, in the present study we extend the treatment from alternant 
nonclassical polymers to two-dimensional ones as well as to nonalternant and 
heteroatomic nonclassical polymers. 

The band structure of the polymers is obtained by means of  a Hiickel version of 
the Bloch method [6]. The method [6] allows also to treat polymers with a finite 
number of  monomeric units; in this case the polymer is thought to be embedded 
in a cylindrical surface exhibiting at least CN symmetry and ~oj = 2j~r/N denotes 
the argument of the character of  the rotation in the irreducible representation Fj 
of this group. For finite N, each band consists of N discrete eigenvalues located 
equidistantly with respect to ~o. 

In the case of  alternant nonclassical polymers the Alternant Molecular Orbital 
(AMO) version of the extended Hartree-Fock (EHF) method described in [1, 7, 8] 
is applied in order to account for the electron correlation. The resulting data are 
used for a refining of the band structure and the estimation of the spin densities. 

A classification of the non-classical polymers has been elaborated which proves 
to be a helpful means in the investigation of  the magnetic properties at finite 
temperatures being in progress. 
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2. Alternant nonclassical polymers 

An alternant homonuclear system may be represented by two sub-systems of 
starred and non-starred atoms, respectively, so that every starred atom is con- 
nected to non-starred atom and vice versa. 

According to the Coulson-Rushbrook theorem [9], an alternant system in which 
the number of  starred :atoms, S, exceeds the number of  non-starred atoms, R, 
has S -  R non-bonding molecular orbitals (NBMO). Alternant nonclassical sys- 
tems are, for instance, the polymers III, IV, and V (here and in the following 
only one of the possible formulae is given). 

- - - /  * �9 �9 ~ - - -  

* 11 
III 

IV v 

In each unit in these polymers there is one starred atom more than non-starred 
ones. Hence, a polymer consisting of N units has S -  R = N degenerate NBMO. 

A non-classical monomer does not necessarily lead to a non-classical polymer. 
The type of the polymer is also determined by the topology of the bonds between 
neighbouring structural units. Thus the typical non-classical benzyl radical forms 
both, the non-classical polymer II, 

and the classical polymer: 

2.1. One-dimensional alternant non-classical polymers 

The structure of the polymers, treated in this subsection, are described above by 
the formulae III, IV and V. Their characteristic polynomials are given in Appendix 
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I. For the discussion of  the general feature of  these systems, polymer  I I I  may 
serve as an example. Its characteristic polynomial  reads 

X(X 2-  1)3(X2--4)(X4--8X2+ 13 --2 COS tO) = 0; (1) 

the MO energies, ej, are related to the roots of  the characteristic polynomial  xj, 
according to xj = ( a -  ej)/fl; the argument to = ka, where k denotes the Bloch 
wave vector; fl < 0 is the resonance integral for adjacent AO. 

According to Eq. (1), polymer  I I I  has 9 infinitely narrow bands: in the bonding 
region there is a band at ej = 2fl and a three-fold degenerated band at ej =/3;  
then there is a non-bonding band at ej = 0 (containing N degenerate NBMO),  
and finally in the antibonding region there are a three-fold degenerated band at 
e~ = - f l  and one at e~ =-2 /3 .  Besides these, there are two bonding (BMO) and 
two antibonding (ABMO) bands of the energy: 

e~ = +/3x/4• + 2 cos to. (2) 

As seen from Appendix I the polymers IV and V have also infinitely narrow 
bands at ej = 0 (NBMO) ; in addition polymer V has two more infinitely narrow 
bands at ej = +/3. All BMO and ABMO bands of  these polymers are well separated 
from the N B M O  bands. Thus, all three polymers have the general pattern of  
valence, NBMO,  and conductivity band, depicted schematically in Fig. 1. Since 
within the applied approximation geometric factors and correlation effects are 
neglected, the energy gap, AE~, between the BMO and ABMO bands is deter- 
mined merely by the molecular  topology and equals to: 

AE~(I I I )  = Atop(III) = -2/3x/4-x/-5 = -2.656/3 

AEoo(IV) = A t o p ( I V )  = - 1.771/3 (3) 

AE~(V) = Atop(V) = - 1.409/3. 

The following polymer  

. . . .  

may serve as an example for an alternant non-classical polymer having a zero 
energy gap. It is easily seen from its characteristic polynomial:  

x ( x 4 - 6 x 2 + 4 - 4  cos to) = 0 

that the valence and conductivity bands have the points x = 0, w = 0 in common. 

The polymers treated here are polyconjugated systems, and may be significantly 
stabilized by their delocalization energy which may be compared by means of 

empty 

full 

ABMO 

NBMO 

I BMO 
Fig. 1. Scheme of the energy spectrum of alternant non-classical 
polymers 
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the specific delocalization energies: 

1 N 

s= mN ~=j ~ ~e~ (4) 

where m denotes the number of electrons per unit, i the index of the bands, j 
the index of the MO in their bands and K 0 its occupation number. 

The specific delocalization energy of polymer III is given by (cf. Eq. (2)): 

g ( I I I )=  lim [13-~ ~ ~ 2e~] 
N ~ o ~  i = l  j = l  

_ 1 6 + 4 +  ~/4+~/3+2cos~o+~/4-~/3+2cos~o &o 
13 

4.301 
= /3. 

,rr 

For polymers IV and V, respectively, the specific delocalization energies are: 

4.364 
g(IV) = /3 

'W 

4.317 
g(V) = - - / 3 .  

ST 

The three polymers have a considerable specific delocalization energy in com- 
parison with some well-known systems (polyenes [10] without bondqength 
alternation: 4/~-/3 ; diphenylmethyl radical [ 11 ]: 4.181 / 7r/3 ; and triphenylmethyl 
radical [11]: 4.266/7r/3). From this, polymer II, IV, and V are supposed to be 
relatively stable since their specific delocalization energy exceeds in magnitude 
even that of the triphenylmethyl radical which is known as a stable chemical 
system due to its considerable delocalization energy. 

Taking into account the electron interaction, the energy of a fixed state of the 
polymers depends on the spin configuration in the NBMO and on the total spin, 
S, of the system. If there are p electrons with a spin Q) and q = N - p  electrons 
with /3 spin (~) occupying the NBMO's (see Fig. 2), one obtains for S the 
following expression: 

S=~lp(a)-q(/3)l = {12p-  N I =  NI1-2p/N]. (5) 

Applying the AMO variant of the Extended Hartree-Fock method [7, 8] (AMO- 
EHF) described in [1], the ground state energy per electron of a non-classical 
polymer is given by the following expression (obtained by inserting Eq. (23) into 
Eq. (22) in [1]): 

e=4 m 2rnN. lek l. (6) 
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r r 1 6 2  + ......... + NBMO's 

p(a) q ( ~ )  (q:N-p) 

NlaJ N{~I 

BMO's 

Fig. 2. Scheme of spin distribution of the occupied 
MO's of ahernant non-classical polymers 

Therein ej~ is the orbital energies depending upon the spin (o-= a, fl); 67 = - ~  
and 6~ = - 6 ~  are the correlation corrections; 7 denotes the one center Coulomb 
integral of  the carbon atom; the quantities, dT, depend on the spin configuration 
in the NBMO band (Fig, 2) and are equal to [1]: 

1 P 2 1 N 2 

d~ = - d ~  

(7) 

where % denotes the non-zero NBMO coefficients for the AO of the starred 
atoms and % = 0 for non-starred ones. In Eqs. (6) and (7) and further on s and 
r are the indices of  the starred and non-starred atoms, respectively. 

In the Har t ree-Fock (HF) approximation the correlation corrections vanish 
(6~= 6 7 = 0 ) ;  hence, the orbitals energies, ego~ do not depend on the spin and 
are equal to the energies, ej, i.e.: ej~ = ejo = ej. Thus, Eq. (6) takes the following 
form: 

-1  E 3' 43' 
e = m N  ' ~ ]e0[+~--m--~ (d : )  2. (6a) 

According to the above equality the energy of  an arbitrary alternant non-classical 
polymer reaches its minimum at the maximum of  d~. This corresponds to a 
ground state configuration with maximum spin multiplicity: S = N / 2 ;  as seen 
from Eq. (5) this implies p(~)  = N, and q(fl) = 0. In this case, where q~ (NBMO) 
is the contribution of  all NBMO to the atomic electron charges Eq. (7) takes the 
form: 

N 
2 = q~(NBMO). (S) 2d~ = ~ csj 

j= l  

The validity of  the above conclusion, minimum ground state energy corresponding 
to maximum multiplicity, is also maintained within the AMO-EHF-treatment 
where electron correlations are taken into account (6~" # 0, 67 # 0). This can be 
verified by minimizing the ground state energy corresponding to Eq. (6). Within 
this approach the energy gap is determined not merely by the topological factor 
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A,ov, but also by a correlation factor, A ..... as well [12, 13]: 

2 AE =,/Atop+ 2 ~corr. 

The orbital energies of  the polymers treated are not materially affected by the 
electron correlations such that the band pattern is qualitatively maintained as 
given in Fig. 1. The degeneracy of the NBMO's  is not removed which has essential 
consequences for the magnetic properties of these polymers. The energy gap is 
slightl'j widened, i.e.: AE~o ~ A~on. Thus, in the case of polymer I I I ,  using the 
approach [13] and the values/3 = -2 ,  4 eV, 3' = 5, 4 eV [1, 12], one obtains A .... = 
1197 eV and according to Eq. (3) Atop = 6.3744 eV. From this the energy gap 
amounts AEoo(III) = 6.486 eV. 

At the end of this subsection we discuss the effect of substituents on the band 
structure of  alternant non-classical polymers. The Coulson-Rushbrooke theorem 
[9] is based on the equivalence of the Coulomb integrals of  the different sites. 
In a real polymer,  however, the o--core affects the Coulomb integrals of  the 2pvr 
AO. As a result, the degeneracy of the NBMO is removed. The widening of the 
NBMO band depends on the art of the substituents but it remains narrow 
what so ever. 

Maximal effects may be anticipated for the replacement of a carbon atom by a 
hetero atom; such a case is realised in polymer XII ,  treated in Sect. 4. The 
perturbation might also be considerable when the substituent 
(--C1, - - C H O ,  --NO2, etc.) contributes ~r-electrons to the system of conjugation. 

Medium effects may be anticipated when some hydrogen atoms are substituted 
by alkyl groups which do not extend the 7r-electron conjugation; this situation 
is illustrated by the following example: 

R R 

vI 

The parent compound of this polymer (VI*, R = H) was treated in [1]; the band 
structure displays an infinitely narrow NBMO band in the middle of  the energy 
gap, A E ~ = - 2 / 3 .  In the case R = a l k y l ,  we denote by a=ao+h/3=h/3 the 
Coulomb integral of the exocyclic carbon atom to which the substituent R is 
attached. Thus the characteristic polynomial for polymer VI reads: 

(x 2 -  1)[x(x4-7x2+ 1 0 - 2  cos o~)+ h(x4-5x2+4)] = O. 

The NBMO band of VI* is replaced by a narrow band, which is slightly shifted 
to negative, (positive) energies for h > 0 (h < 0). For R = methyl (h = - 0 ,  4), the 
NBMO split into a band of MO energies within the interval: 

0.132/3 -> ek ~> 0.197/3. 
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The energy gap between the highest fully filled and the lowest empty band is not 
affected noticeably by the variation of the parameter h. 

2.2. Two-dimensional alternant non-classical polymers 

In the case of  two-dimensional polymers there are two independent variables Wl 
and to2; if there are N1 and N2 elementary units respectively in the two directions 
of  translational symmetry we have tolj = 2jTr/N~ and tO2k = 2kTr/N2. Taking this 
into account, the treatment of one-dimensional polymers is easily extended to 
two-dimensional systems. 

The band structure of two-dimensional alternant non-classical polymers is charac- 
terized by a large energy gap and degenerate NBMO band in its middle. For the 
hydrocarbon VII, proposed by Mataga, the characteristic polynomial is given in 
Appendix I. The energy gap amounts to AE~ = - 2 / 3  and the NBMO lies in its 
middle. 

1 

i 

V I I  

The polymers II and VII have the same monomeric unit, namely benzyl, but VII 
has a greater delocalization energy per electron than II. The comparison of  their 
values with that of triphenyl radical reveals: 

triphneylmethyl- 
radical piolymer II Mataga polymer VII 

4.266 4.172 4.398 
g =  /3 g =  /3 g =  /3. 

7/" 77" 77" 

The greater delocalization energy of the two-dimensional polymers suggests their 
higher relative stability. 

The Mataga polymer, VII, is ot free of sterical hindrance of  the hydrogen atoms. 
This is eluded in the case of  the polymer represented on the next page which 
has a similar band structure as well as an energy gap AEo~ = -2/3. 
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1 

I 

3. Non-alternant  non-classical  polymers 

The necessary and sufficient condition for alternant systems is that it does not 
contain odd membered rings. For the construction of non-alternant polymer 
systems, the presence of an odd membered ring in the monomeric  unit is necessary. 
In order to obtain a non-classical non-alternant polymer (NANCP)  it is not 
sufficient to choose a non-alternant radical for the monomeric  unit, but it is also 
necessary to prevent the unpaired electrons of  neighboring units from forming 
a pair as shown by the following example: 

Such a switching is avoided in the case of  polymers IX and X. But when one 
tries to synthesize these polymers by successive additions of monomeric  units a 
head to head, tail to tail alignment may occur corresponding to the polymers 
IXa and Xa, respectively. 

C, C 

i .... C -- C. C --C .... IX 

. . . .  C' C - - C  . . . .  
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C~ C 

.... C , - -  C , - - . C .  C ..... 

.... C - - C ~  C - - C  

Xa 

However ,  the a forement ioned  difficulties cannot  occur  in the case o f  po lymer  VIII .  

VIII 

Beside the polymers  IX and X that po lymer  XI  is another  typical member  o f  
N A N C P .  

. . . .  C c . . . .  

xI  

This po lymer  contains structural elements o f  the Koelsch radical [15], which is 
stable towards  oxygen at room temperature.  

(the Koelsch radical) 

The characterist ic polynomials  o f  all these polymers  are given in Appendix  I. 
Since the C o u l s o n - R u s h b r o o k e  theorem [9] cannot  be applied, no conclusion 
can be drawn about  the occurrence o f  a N B M O  band,  which is typical for  
al ternant non-classical  polymers.  
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Fig. 3. Energy of the frontier bands -0.6 
of polymer IX 

,k j '  
. / . J *  

O ~ 
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The polymer IX has 7 BMO- and 6 ABMO bands. The frontier bands are shown 
in Fig. 3. The highest BMO band is half-filled and has a width of  about 0.5fl 
(1.2 eV). 

I f  the H M O  approximation provides a realistic description of the band structure 
of  polymer IX, a metallic state should be anticipated. 

However, the polymer IX could be"stabilized under certain conditions, by accept- 
ing one electron per unit, thus forming the structure IXb;  in this case the energy 
gap is reduced to: AE~ ( IXb)=-0 .254/3 .  

. . . .  C -C . . . .  
IXb 

The polymer X has 7 BMO and 8 ABMO bands. The lowest ABMO band is 
half-filled. From an energetic viewpoint a more favourable structure, Xb can be 
achieved by loosing one electron per unit. Hereby, the energy gap amounts to: 
AE~ (Xb)=-0 .445/3 ,  

--C C-- 
Xb 

The polymer VIII  contain ring with an odd number  of  atoms, hence, the Coulson-  
Rushbrooke theorem [9] does not hold. Still, NBMO's  appear  due to the factors 
discussed in [16] (see the characteristic polynomial  for polymer VII I  given in 
Appendix I). 

In Table 1 the specific delocalization energies of  the polymers VIII  to XI and 
those of their monomeric  units are given. Polymer XI  has the largest specific 
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Table 1. Specific electron delocalisation energies of poly- 
mers VIII to XI, of their monomeric units, and of the 
Koelsch radical [15] (in/3 units) 

Monomeric 
Polymer units 

VIII 4.297/~- 3.965/7r 
IX 4.402/7r 4.351/~- 
X 4.241 / 7r 4.093/~r 
X I 4.473/7r 4.310/r 
Koelsch radical 4.386/~" 

N. Tyutyulkov et al. 

delocalization energy, comparable with that of  Koelsch's radical, quoted also in 
Table 1. Since this radical is very stable [15], a considerable stability of polymer 
XI may be also expected. Thus, polymer XI offers possibly a real chance for the 
synthesis of a non-classical polymer. 

4. Nonclassical polymers with heteroatoms 

The replacement of  a carbon atom or a CH-group in a non-classical polymeric 
hydrocarbon by a heteroatom, e.g. N, results in the formation of  a nonclassical 
heteropolymer. Thus, polymer XII  is derived from polymer V. 

XII 

The nitrogen atom in XVII forms two o--bonds, a lone pair, and contributes one 
electron to the 7r-system of conjugation. The Coulson-Rushbrooke theorem [9] 
does not apply to heteroatomic polymers. Therefore, as in the case of class 1 of 
nonalternant nonclassical polymers, a NBMO-band does not appear necessarily. 
And, indeed, polymer XII  has no NBMO band as follows from its characteristic 
polynomial, given in Appendix I. We assume [17] h = 1 for the Coulombic 
parameter of the nitrogen: It consists of 7 BMO- and 6 ABMO bands; as in the 
case of  polymer V there occur 1 BMO and 1 ABMO which are infinitely narrow 
and are located at :e/3, respectively. The highest BMO band, occupied by only 
half of the electrons, is almost dgenerate and ranges as follows: 

0.319/3 <~ eTj ~ 0.311/3. 

The energy gap between the highest fully occupied and the lowest empty band 
has the magnitude: 

AE~(XII)  = e s ( w j  = "n') - e6(ogj  = 7r) = -1.409/3. 
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5. Spin densities of alternant nonclassical polymers 

In this discussion of the band structure of alternant non-classical polymers we 
have made use of the AMO version of the EHF method [6, 7] in order to refine 
the band structure with special regard to the energy gap. As pointed out in [18, 19], 
the AMO's are closely related to the Spin Density Waves (SDW), which may be 
well adopted for alternant non-classical polymers [1], where, as a consequence 
of the Coulson-Rushbrooke theorem [9], no charge alternations occur within the 
HF approximation. However, the AMO (SDW) formalism used in [1] cannot be 
applied without certain modifications to nonalternant and /or  heteroatomic poly- 
mers which usually possess a very pronounced structure of net atomic charges. 
Therefore, we restrict our considerations here to alternant non-classical polymers. 

Within the AMO-EHF (SDW) method the spin densities at starred and non- 
starred atoms, Pr and ps, respectively, are expressed [1] as follows: 

ps= q ~ - q ~  = 2 d ~ + 2 ~ ,  ~ (10) 

pr = q'~ - q~ = 2 6 7  

where 67 and 87 are the correlation corrections already used in Eq. (6). 

In the ground state characterized by maximum multiplicity, all the electron spins 
are parallel (S = N / 2 )  and, hence, from Eqs. (8) and (10) one obtains 

p~ = q,(NBMO) + 267 
(II) 

p~=267. 

Within the HF approximation, the correlation corrections, g~ and ~7, vanish. 
Hence, the spin densities are equal to the contributions of the NBMO to the 

-0.1/,4 
0,0805 

-0.078 ~ -0.078 0.1~7 ~ ~} -0.147 

0,0805k~0,0805 
-0.078 -0.147 

Q) HF b) EHF 
Fig. 4. Distribution of spin density in the elementary unit of polymer I at p/N=O:a) in HF 
approximation; b) in EHF-AMO approximation 



224 N. Tyutyulkov et al. 

atomic electron charges, i.e. zero for the non-starred atoms. Their values for 
polymer III are shown in Fig. 4a; they are calculated from the NBMO coefficients 
as follows: 

2 = 4(c11.j)2 = 4Q(toj) C I , j  

2 2 c3u = ( -csu)  - 2(1 - c o s  ~oj)O(%) 

2 = 2 ( 1 + c o s  wj)Q(%) C 7 , j  

2 2 1 /4 ( -c ,  d) 2 O(w~) C9,  j ~ C 13 , j  ~ -  

where Q(w) = (13+ 12 cos wj) -1. 

In the case of N ~ ~ ,  the charge densities are obtained by means of integrating 
the above expressions: 

1 l"  
q~(NBMO) =~-~ J_= c~(w) do. 

Taking into account Eq. (11), we obtain the total atomic spin-densities per unit 
of the ground state: 

p = ~ p s = l + 2 ~ 3 ~  (12) 
5 X 

r r s 

wherein the condition [l] 

E 8 ~ + E  6 7 : 0  (13) 
x r 

is used. Eq. (12) implies that the total spin densities per unit at atoms belonging 
to different subsystems-starred and non-starred differ in magnitude and sign, i.e. 
gr 

p#p. 

The two subsystems form two spin sublattices. Eq. (12), i.e., p # p, correspond 
to a ferrimagnetic ground state of non-zero total spin (0<  S < N/2) since the 
sublattices display antiparal[el spins of different magnitude. The correlation 
corrections, 6~" and 87, and consequently the quantities fi and p are calculated 
for polymers I, II and III. The result/~ ~ ~ not changed qualitatively; thus, these 
polymers have a ferrimagnetic ground state. 

The correlation corrections, 6~ and 6~, are different at different atoms. As 
discussed in [1], they are obtained by solving a system of (m - 1) coupled integral 
equations, where m denotes the number of AO per unit. The mean values of the 
correlation corrections for each subsystem of atoms: 
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: 1  z 
R r ~7 

are obtained quite easily [1]. The above relations and condition (13) yield the 
following equalities for the mean correlation corrections: 

6 ~ =  ( R / S ) .  3~ 

where S and R denote the number  of  starred- and non-starred atoms per unit, 
respectively. From this, the atomic spin densities (1 l) take the form: 

p, = q , (NBMO) + 2g ~ 

p r = 2 6  ~ 

and for the total spin densities (12), we obtain: 

= l + 2 R ~  ~ 
(14) 

p = 2S6  ~. 

The mean spin densities, calculated for polymer I, are shown in Fig. 4b. 

The total spin densities calculated either according to Eq. (12) or by using the 
mean values of  the correlation corrections do not differ substantially. In the case 
of  polymer I, for instance, they read: 

p =  1 + 2 2  a~ = t.375 
s 

p = l + 2 s 3  =1.484. 

The use of  the mean values in the calculation of the spin densities is reasonable 
since the correlation corrections are obtained without any projection of the wave 
function [1], i.e., the magnitudes 6 ~ and 67 obtained from (m - 1) coupled integral 
equations (Eq. (18) in [1]) are not fully correct. Their calculation is rather len~gthy. 
In contrast to that, as seen from Eqs. (19) and (20) o f [ l ] ,  the mean values 6 and 
6 are obtained from a single integral equation. Since the spin densities do not 
differ substantially either the one or the other set of  correlation corrections are 
used it seems to be reasonable to use the mean values. 

6. Discussion 

The magnetism and conductivity of  non-classical polymers are of  great interest. 
The theoretical treatment of the conductivity of  non-classical polymers lies beyond 
the aims of the present paper  and will be the subject of a future study. 

The real polymers,  if synthesized, will be three-dimensional ones. Unless strong 
valence interactions between the chains and the planes, respectively, form o-- 
bonds, the polymers will exist as quasi-one-dimensional or quasi-two-dimensional 
(of graphite type) systems. All the results obtained are qualitatively reliable if 
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the interaction between chains or planes remains weak-non-valent.  In this case 
the restrictions imposed by the theorems [20, 21] which rule out spontaneous 
magnetization in one and two dimensions fail. Still, the problem whether the 
discussed results will be of  practical interest for the polymer chemistry remains 
open, since it is hard to estimate the lifetime of non-classical polymers. However, 
due to the considerable delocalization energy they may be even more stable than 
the triphenylmethyl radical. 

It is not easy to predict the effect of  interchain or interplane interaction within 
the materials, if  synthesized. These interactions may drastically change the electric 
and magnetic properties in some cases. Nevertheless, the chemistry of  radicals 
has provided some rather surprising results as, e.g., it was in the case of the 
Koelsch radical [15]. 

On account of  the above considerations, one may expect that the non-classical 
polymers represent some organic material exhibiting attractive physical 
properties. 

Appendix I 

Here we give the characteristic polynomials for some of the polymers. 

Polymer II: 

X(X 2- l )(x4--7X2+ 10--2 COS ~o) =0.  

Polymer I I I :  

x ( x  2 -  1 ) 3 ( x 2 - 4 ) ( x 4 - 8 x 2 +  13 - 2  cos w) =0 .  

Polymer IV: 

x[x  l ~  14x8+ (68 - 4  cos w ) x 6 -  ( 1 4 4 -  22 cos w ) x  4 

+ ( 131 - 32 cos w + 4 cos 2 w)x 2 - (40 - 12 cos oJ + 4 cos 2 o~)] = O. 

Polymer V: 

x ( x  2 - 1)Ix ~~ 14x8+ (70 - 2  cos w ) x  6 - ( 1 5 4 -  12 cos w ) x  4 

+ ( 1 4 7 -  16 cos w ) x 2 - 4 6 + 2  cos w] =0 .  

Polymer VII: 

x ( x  2 -  1)[x 4 -  8x2+ 13 - 2  cos oJ1- 2 cos o~2- 2 cos (~ol- w2)] = O. 

Polymer VIII :  

x [ x l ~  (13 + 2  cos oJ)xS+ (58+ 18 cos oJ)x6+2(1 +cos  oJ)x 5 

- ( 1 0 6 + 4 8  cos oJ)x 4 -  10(1 +cos  ~o)x3+ (70+42 cos w ) x  2 

+12(1 +cos  ~o)x - 6 ( 1  +cos  w)] = O. 
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P o l y m e r  IX:  

x 13-  ( 1 5 + 2  cos w)x ll + ( 8 5 + 2 2  cos c o ) x g + 2 x S -  ( 2 3 0 -  88 cos oJ)x 7 

- ( 1 8 + 4  cos to )x6+ (311 + 158 cos to)x5 + ( 5 0 + 2 4  cos ~o)x 4 

- ( 1 9 9 +  130 cos t o ) x 3 -  ( 5 0 + 3 6  cos w ) x 2 +  ( 4 7 + 4 0  cos og)x 

+16(1  + c o s  w) = 0. 

P o l y m e r  X: 

x 15 - (17 + 2 cos w)x 13 + ( 1 4 4 + 2 6  cos co)x tl - (387 + 130 cos oJ)x 9 

+ 2 x  8 + (711 + 316 cos o~ ) x 7 - ( 18 + 4 cos w) x 6 + (701 + 392 cos w ) x 5 

+ ( 5 0  + 24 cos w ) x 4 +  (342 + 238 cos w)x  3 - ( 5 0 +  36 cos ~o)x 2 

- (63 + 56 cos w)x  + 16( 1 + cos w) = O. 

P o l y m e r  XI :  

(x  2 -  1)~ x 3 - 5 x e + 3 x + 4 ) [ x l 3 + x t Z -  ( 1 7 + 2  cos ~o)x tl 

- ( 1 5  + 2 cos w)x~~ ( 1 1 0 +  26 cos w ) x 9 +  ( 8 4 +  22 cos ~o)x 8 

- ( 3 4 2  + 122 cos w)x 7 -  (218 + 86 cos w)x 6 + (533 + 254 cos w)x  5 

+ (263 + 142 cos oJ) x 4 - (393 + 236 cos w ) x 3 - ( 127 + 92 cos oJ )x  2 

- ( 1 0 8  + 80 cos w)x + 16(1 + cos w)] = O. 

P o l y m e r  X I I I :  

x(x  2 -  1)Ix 1 ~  14x8+ ( 7 0 - 2  cos ~o)x6-  ( 1 5 4 +  12 cos r 4 

+ ( 1 4 7 -  16 cos t o ) x 2 - 4 6 + 2  cos oo] 

+h(x  2 -  l ) ( x  1 ~  12xS+50x6-88x4+65x2-  16) = 0 .  

I n  the  las t  exp res s ion  h is the  p a r a m e t e r  for  the  C o u l o m b  in tegra l  o f  the  n i t r o g e n  
a t o m  a c c o r d i n g  to aN = o: + hfl, 
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